Fit with valence parametrisation

In this example we show how to bring the PDF parametrisation and forward model together with BAT.jl to perform a fit of simulated data.

using BAT, DensityInterface
using PartonDensity
using QCDNUM
using Plots, Random, Distributions, ValueShapes, ParallelProcessingTools
using StatsBase, LinearAlgebra

zeus_include_path = string(chop(pathof(PartonDensity), tail=20), "data/ZEUS_I1787035/ZEUS_I1787035.jl")
MD_ZEUS_I1787035 = include(zeus_include_path)
gr(fmt=:png);
rng = MersenneTwister(42)
Random.MersenneTwister(42)

Simulate some data

We can start off by simulating some fake data for us to fit. This way, we know exactly what initial conditions we have specified and can check the validity of our inference, assuming the generative model is the one that is producing our data.

This is a good first check to work with.

Specify the input PDFs

See the Input PDF parametrisation and priors example for more information on the definition of the input PDFs. Here, we use the valence parametrisation.

weights = [5.0, 5.0, 1.0, 1.0, 1.0, 0.5, 0.5]
λ_u = 0.64;
K_u = 3.38;
λ_d = 0.67;
K_d = 4.73;
θ = get_θ_val(rng, λ_u, K_u, λ_d, K_d, weights)
pdf_params = ValencePDFParams(λ_u=λ_u, K_u=K_u, λ_d=λ_d, K_d=K_d,
    λ_g1=0.50, λ_g2=-0.63, K_g=4.23, λ_q=-0.23, K_q=5.0, θ=θ);

plot_input_pdfs(pdf_params)

Go from PDFs to counts in ZEUS detector bins

Given the input PDFs, we can then evolve, calculate the cross sections, and fold through the ZEUS transfer matrix to get counts in bins. Here, we make use of some simple helper functions to do so. For more details, see the Forward model example.

first specify QCDNUM inputs

qcdnum_grid = QCDNUM.GridParams(x_min=[1.0e-3], x_weights=[1], nx=100,
    qq_bounds=[1.0e2, 3.0e4], qq_weights=[1.0, 1.0], nq=50, spline_interp=3)
qcdnum_params = QCDNUM.EvolutionParams(order=2, α_S=0.118, q0=100.0, grid_params=qcdnum_grid,
    n_fixed_flav=5, iqc=1, iqb=1, iqt=1, weight_type=1);

now SPLINT and quark coefficients

splint_params = QCDNUM.SPLINTParams();
quark_coeffs = QuarkCoefficients();

initialise QCDNUM

forward_model_init(qcdnum_params, splint_params)
  +---------------------------------------------------------------------+
  |                                                                     |
  |    If you use QCDNUM, please refer to:                              |
  |                                                                     |
  |    M. Botje, Comput. Phys. Commun. 182(2011)490, arXiV:1005.1481    |
  |                                                                     |
  +---------------------------------------------------------------------+



 FILLWT: start unpolarised weight calculations
 Subgrids    1 Subgrid points  100
 Pij LO
 Pij NLO
 Pij NNLO
 Aij LO
 Aij NLO
 Aij NNLO
 FILLWT: weight calculations completed


 ZMFILLW: start weight calculations   4  38   0   0
 ZMFILLW: calculations completed
┌ Warning: SPLINT is already initialised, skipping call to QCDNUM.ssp_spinit()
└ @ QCDNUM /opt/myjulia/packages/QCDNUM/gx4Mo/src/splint/initialisation.jl:36

run forward model

counts_pred_ep, counts_pred_em = forward_model(pdf_params, qcdnum_params, splint_params, quark_coeffs, MD_ZEUS_I1787035);

take a poisson sample

nbins = size(counts_pred_ep)[1]
counts_obs_ep = zeros(UInt64, nbins)
counts_obs_em = zeros(UInt64, nbins)

for i in 1:nbins
    counts_obs_ep[i] = rand(rng, Poisson(counts_pred_ep[i]))
    counts_obs_em[i] = rand(rng, Poisson(counts_pred_em[i]))
end
plot(1:nbins, counts_pred_ep, label="Expected counts (eP)", color="blue")
plot!(1:nbins, counts_pred_em, label="Expected counts (eM)", color="red")
scatter!(1:nbins, counts_obs_ep, label="Detected counts (eP)", color="blue")
scatter!(1:nbins, counts_obs_em, label="Detected counts (eM)", color="red")
plot!(xlabel="Bin number")

store

sim_data = Dict{String,Any}()
sim_data["nbins"] = nbins;
sim_data["counts_obs_ep"] = counts_obs_ep;
sim_data["counts_obs_em"] = counts_obs_em;

write to file

pd_write_sim("output/simulation_valence.h5", pdf_params, sim_data, MD_ZEUS_I1787035)
QCDNUM.save_params("output/params_val.h5", qcdnum_params)
QCDNUM.save_params("output/params_val.h5", splint_params)

Fit the simulated data

Now we can try to fit this simulated data using Bat.jl. The first step is to define the prior and likelihood. For now, let's try relatively narrow priors centred on the true values.

prior = NamedTupleDist(
    θ_tmp=Dirichlet(weights),
    λ_u=Truncated(Normal(pdf_params.λ_u, 1), 0, 1),
    K_u=Truncated(Normal(pdf_params.K_u, 1), 2, 10),
    λ_d=Truncated(Normal(pdf_params.λ_d, 1), 0, 1),
    K_d=Truncated(Normal(pdf_params.K_d, 1), 2, 10),
    λ_g1=Truncated(Normal(pdf_params.λ_g1, 1), -1, 0),
    λ_g2=Truncated(Normal(pdf_params.λ_g2, 1), -1, 0),
    K_g=Truncated(Normal(pdf_params.K_g, 1), 2, 10),
    λ_q=Truncated(Normal(pdf_params.λ_q, 0.1), -1, 0),
    K_q=Truncated(Normal(pdf_params.K_q, 0.5), 3, 7)
);

The likelihood is similar to that used in the input PDF parametrisation example. We start by accessing the current parameter set of the sampler's iteration, then running the forward model to get the predicted counts and comparing to the observed counts using a simple Poisson likelihood.

likelihood = let d = sim_data

    counts_obs_ep = d["counts_obs_ep"]
    counts_obs_em = d["counts_obs_em"]
    nbins = d["nbins"]

    logfuncdensity(function (params)

        θ = get_scaled_θ(params.λ_u, params.K_u, params.λ_d,
            params.K_d, Vector(params.θ_tmp))

        pdf_params = ValencePDFParams(λ_u=params.λ_u, K_u=params.K_u, λ_d=params.λ_d,
            K_d=params.K_d, λ_g1=params.λ_g1, λ_g2=params.λ_g2,
            K_g=params.K_g, λ_q=params.λ_q, K_q=params.K_q, θ=θ)

        counts_pred_ep, counts_pred_em = @critical forward_model(pdf_params, qcdnum_params, splint_params, quark_coeffs, MD_ZEUS_I1787035)

        ll_value = 0.0
        for i in 1:nbins

            if counts_pred_ep[i] < 0
                @debug "counts_pred_ep[i] < 0, setting to 0" i counts_pred_ep[i]
                counts_pred_ep[i] = 0
            end
            if counts_pred_em[i] < 0
                @debug "counts_pred_em[i] < 0, setting to 0" i counts_pred_em[i]
                counts_pred_em[i] = 0
            end

            ll_value += logpdf(Poisson(counts_pred_ep[i]), counts_obs_ep[i])
            ll_value += logpdf(Poisson(counts_pred_em[i]), counts_obs_em[i])
        end

        return ll_value
    end)
end
LogFuncDensity(Main.var"#2#3"{Int64, Vector{UInt64}, Vector{UInt64}}(153, UInt64[0x00000000000002de, 0x000000000000020c, 0x00000000000001df, 0x00000000000001c9, 0x000000000000013c, 0x0000000000000137, 0x0000000000000103, 0x00000000000002b6, 0x00000000000002e1, 0x000000000000029c  …  0x000000000000002a, 0x0000000000000024, 0x0000000000000017, 0x000000000000000d, 0x0000000000000008, 0x0000000000000005, 0x0000000000000005, 0x0000000000000002, 0x0000000000000081, 0x000000000000000c], UInt64[0x0000000000000252, 0x00000000000001a5, 0x0000000000000152, 0x0000000000000147, 0x00000000000000f1, 0x00000000000000e9, 0x00000000000000c3, 0x00000000000001de, 0x0000000000000224, 0x000000000000021d  …  0x0000000000000017, 0x0000000000000010, 0x000000000000000e, 0x0000000000000005, 0x0000000000000007, 0x0000000000000001, 0x0000000000000000, 0x0000000000000000, 0x000000000000003e, 0x0000000000000004]))

We can now run the MCMC sampler. We will start by using the Metropolis-Hastings algorithm as implemented in BAT.jl. To get reasonable results, we need to run the sampler for a long time (10s of min). To save time in this demo, we will work with a ready-made results file. To actually run the sampler, simply uncomment the code below.

#posterior = PosteriorDensity(likelihood, prior);

#mcalg = MetropolisHastings(proposal=BAT.MvTDistProposal(10.0))
#convergence = BrooksGelmanConvergence(threshold=1.3)
#samples = bat_sample(posterior, MCMCSampling(mcalg=mcalg, nsteps=10^4, nchains=2, strict=false)).result;

Alternatively, we could also try a nested sampling approach here for comparison. This is easily done thanks to the interface of BAT.jl, you will just need to add the NestedSamplers.jl package.

#import NestedSamplers
#samples = bat_sample(posterior, EllipsoidalNestedSampling()).result

If you run the sampler, be sure to save the results for further analysis

#import HDF5
#bat_write("output/results.h5", samples)

Analysing the results

First, let's load our simulation inputs and results

pdf_params, sim_data = pd_read_sim("output/demo_simulation_valence.h5", MD_ZEUS_I1787035);
samples = bat_read("output/demo_results_valence.h5").result;
[ Info: Using input algorithm BAT.BATHDF5IO()

We can use the same QCDNUM params as above

loaded_params = QCDNUM.load_params("output/params_val.h5")
qcdnum_params = loaded_params["evolution_params"]
splint_params = loaded_params["splint_params"]
QCDNUM.SPLINTParams
  label: String "splint_params"
  nuser: Int64 10
  nsteps_x: Int64 5
  nsteps_q: Int64 10
  nnodes_x: Int64 100
  nnodes_q: Int64 100
  rs: Float64 318.0
  rscut: Float64 370.0
  spline_addresses: QCDNUM.SplineAddresses

We can check some diagnostics using built in BAT.jl, such as the effective sample size shown below

bat_eff_sample_size(unshaped.(samples))[1]
16-element Vector{Float64}:
  78.95438454330977
  76.92902648441036
 127.94736564513427
 113.01385653020863
 124.66634140090652
  85.57027281024229
 125.83122854458189
  88.77889985114359
  58.83539074185682
  98.61294937292556
  63.95829439414225
  65.48760173078279
 154.37784934609786
 115.57665325834326
 132.33126965428093
  71.28069045775902

We see a value for each of our 15 total parameters. As the Metropolis-Hastings algorithm's default implementation isn't very efficient, we see that the effective sample size is only a small percentage of the input nsteps. We should try to improve this if possible, or use a much larger nsteps value.

For demonstration purposes, we will continue to show how we can visualise the results in this case. For robust inference, we need to improve the sampling stage above.

We can use BAT.jl's built in plotting recipes to show the marginals, for example, consider λ_u, and compare to the known truth.

plot(
    samples, :(λ_u),
    nbins=50,
    colors=[:skyblue4, :skyblue3, :skyblue1],
    alpha=0.7,
    marginalmode=false,
    legend=:topleft
)
vline!([pdf_params.λ_u], color="black", label="truth", lw=3)

If we want to compare the momentum weights, we must transform from θ_tmp to θ, as shown below. Here, we transform using a helper function, convert the result to a matrix, and access the ith weight with the integer i.

θ = [get_scaled_θ(λ_u, K_u, λ_d, K_d, Vector(θ_tmp)) for (λ_u, K_u, λ_d, K_d, θ_tmp)
     in
     zip(samples.v.λ_u, samples.v.K_u, samples.v.λ_d, samples.v.K_d, samples.v.θ_tmp)];

θ = transpose(reduce(vcat, transpose.(θ)))

i = 1
hist = append!(Histogram(0:0.02:1), θ[i, :])
plot(
    normalize(hist, mode=:density),
    st=:steps, label="Marginal posterior"
)
vline!([pdf_params.θ[i]], color="black", label="truth", lw=3)

Rather than making a large plot 15 different marginals, it can be more useful to visualise the posterior distribution in differently, such as the shape of the distributions we are trying to fit, or the model space. Helper functions exist for doing just this.

Using BAT recipe

function wrap_xtotx(p::NamedTuple, x::Real)
    θ = get_scaled_θ(p.λ_u, p.K_u, p.λ_d, p.K_d, Vector(p.θ_tmp))
    pdf_params = ValencePDFParams(λ_u=p.λ_u, K_u=p.K_u, λ_d=p.λ_d, K_d=p.K_d, λ_g1=p.λ_g1,
        λ_g2=p.λ_g2, K_g=p.K_g, λ_q=p.λ_q, K_q=p.K_q, θ=θ)
    return log(xtotx(x, pdf_params))
end

x_grid = range(1e-3, stop=1, length=50)
plot(x_grid, wrap_xtotx, samples, colors=[:skyblue4, :skyblue3, :skyblue1],
    legend=:topright)
plot!(x_grid, [log(xtotx(x, pdf_params)) for x in x_grid], color="black", lw=3,
    label="Truth", linestyle=:dash)
plot!(ylabel="log(xtotx)")

Using PartonDensity.jl

plot_model_space(pdf_params, samples, nsamples=200)

Alternatively, we can also visualise the implications of the fit in the data space, as shown below.

plot_data_space(pdf_params, sim_data, samples, qcdnum_params,
    splint_params, quark_coeffs, MD_ZEUS_I1787035, nsamples=200)

This page was generated using Literate.jl.