Input PDF parametrisation and priors
An important part of PDF fitting is defining a useful parametrisation for the PDF shapes, as well as meaningful prior distributions that encode our knowledge of the problem.
In this notebook, and in the PartonDensity
package, we explore two different approaches:
- Full Dirichlet
- Valence shape + Dirichlet
We are still investigating which approach will be most effective, and so both options are currently implemented, as detailed below.
using Distributions, Plots, SpecialFunctions, Printf
const sf = SpecialFunctions;
"Full Dirichlet" approach
A clean way to ensure the momentum sum rule would be to sample different contributions of the momentrum density integral from a Dirichlet distribution, then use these weights to set the parameters on the individual Beta distributions.
9 components of decreasing importance
dirichlet = Dirichlet([3.0, 2.0, 1, 0.5, 0.3, 0.2, 0.1, 0.1, 0.1])
data = rand(dirichlet, 1000);
Have a look
plot()
for i in 1:9
histogram!(data[i, :], bins=range(0, stop=1, length=20), alpha=0.7)
end
plot!(xlabel="I_i = A_i B_i")
This would be great as the sum rule is automatically conserved
sum(data, dims=1)
1×1000 Matrix{Float64}:
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0
But, it could be non-trivial to choose the Dirichlet weights for a sensible prior, and connect to the physics of the problem.
I = rand(dirichlet)
9-element Vector{Float64}:
0.4055947014709274
0.30508650005447874
0.260131720517334
0.010164020052013606
0.0004301483094250276
0.0003372244211351536
0.0006195023288865742
0.017633604829555855
2.5780162438110665e-6
As we are more interested in K_u
and K_d
than λ_u
and λ_d
for our high-x data, we can set the λ
s according to the K
s.
K_u = rand(Uniform(2, 10))
6.101078113987988
Integral of number density must = 2, and integral of momentum density must = I[1]
. This implies the following:
λ_u = (I[1] * (K_u + 1)) / (2 - I[1])
1.806416260922992
Let's check this
A_u = 2 / sf.beta(λ_u, K_u + 1)
I[1] ≈ A_u * sf.beta(λ_u + 1, K_u + 1)
true
While this approach might be nice, it could be hard to set priors on the shape of the valence distributions, as the λ_u
and λ_d
are now derived parameters, dependent on the specified Dirichlet weights and K_u
/K_d
values. However, sensible prior choices could be made using e.g. prior predictive checks.
"Valence shape + Dirichlet" approach
An alternative approach is to specify constraints on the valence params through the shape of their Beta distributions, then using a Dirichlet to specify the weights of the gluon and sea components. The problem here is it isn't clear how to specify that the d contribution must be less than the u contribution, but it is possible to do this indirectly through priors on the shape parameters. This would however also require some further investigation.
x = range(0, stop=1, length=50)
0.0:0.02040816326530612:1.0
High-level priors Looks like we maybe want to change lambda and K priors to boost these components
λ_u = 0.7 #rand(Uniform(0, 1))
K_u = 4 #rand(Uniform(2, 10))
λ_d = 0.5 #rand(Uniform(0, 1))
K_d = 6 #rand(Uniform(2, 10))
u_V = Beta(λ_u, K_u + 1)
A_u = 2 / sf.beta(λ_u, K_u + 1)
d_V = Beta(λ_d, K_d + 1)
A_d = 1 / sf.beta(λ_d, K_d + 1)
1.46630859375
Integral contributions
I_u = A_u * sf.beta(λ_u + 1, K_u + 1)
I_d = A_d * sf.beta(λ_d + 1, K_d + 1)
plot(x, x .* A_u .* x .^ λ_u .* (1 .- x) .^ K_u * 2, alpha=0.7, label="x u(x)", lw=3)
plot!(x, x .* A_d .* x .^ λ_d .* (1 .- x) .^ K_d, alpha=0.7, label="x d(x)", lw=3)
plot!(xlabel="x", legend=:topright)
@printf("I_u = %.2f\n", I_u)
@printf("I_d = %.2f\n", I_d)
I_u = 0.25
I_d = 0.07
The remaining 7 integrals can be dirichlet-sampled with decreasing importance
remaining = 1 - (I_u + I_d)
dirichlet = Dirichlet([3.0, 2.0, 1, 0.5, 0.3, 0.2, 0.1])
I = rand(dirichlet) * remaining;
sum(I) ≈ remaining
true
Gluon contributions
λ_g1 = rand(Uniform(-1, 0))
λ_g2 = rand(Uniform(0, 1))
K_g = rand(Uniform(2, 10))
K_q = rand(Uniform(3, 7))
A_g2 = I[1] / sf.beta(λ_g2 + 1, K_g + 1)
A_g1 = I[2] / sf.beta(λ_g1 + 1, K_q + 1);
Sea quark contributions
λ_q = rand(Uniform(-1, 0))
A_ubar = I[3] / (2 * sf.beta(λ_q + 1, K_q + 1))
A_dbar = I[4] / (2 * sf.beta(λ_q + 1, K_q + 1))
A_s = I[5] / (2 * sf.beta(λ_q + 1, K_q + 1))
A_c = I[6] / (2 * sf.beta(λ_q + 1, K_q + 1))
A_b = I[7] / (2 * sf.beta(λ_q + 1, K_q + 1));
total = A_u * sf.beta(λ_u + 1, K_u + 1) + A_d * sf.beta(λ_d + 1, K_d + 1)
total += A_g1 * sf.beta(λ_g1 + 1, K_q + 1) + A_g2 * sf.beta(λ_g2 + 1, K_g + 1)
total += 2 * (A_ubar + A_dbar + A_s + A_c + A_b) * sf.beta(λ_q + 1, K_q + 1)
total ≈ 1
true
x = 10 .^ range(-2, stop=0, length=500)
500-element Vector{Float64}:
0.01
0.010092715146305713
0.010186289902446875
0.010280732238308653
0.010376050197669118
0.010472251898884349
0.010569345535579883
0.010667339377348576
0.010766241770454934
0.010866061138545973
⋮
0.92882922501725
0.9374408787662996
0.946132375589077
0.9549044557518083
0.963757866384109
0.9726933615426174
0.9817117022752193
0.9908136566858671
1.0
How does it look?
xg2 = A_g2 * x .^ λ_g2 .* (1 .- x) .^ K_g
xg1 = A_g1 * x .^ λ_g1 .* (1 .- x) .^ K_q
plot(x, x .* A_u .* x .^ λ_u .* (1 .- x) .^ K_u * 2, alpha=0.7, label="x u(x)", lw=3)
plot!(x, x .* A_d .* x .^ λ_d .* (1 .- x) .^ K_d, alpha=0.7, label="x d(x)", lw=3)
plot!(x, xg1 + xg2, alpha=0.7, label="x g(x)", lw=3)
plot!(x, A_ubar * x .^ λ_q .* (1.0 .- x) .^ K_q, alpha=0.7, label="x ubar(x)", lw=3)
plot!(x, A_dbar * x .^ λ_q .* (1.0 .- x) .^ K_q, alpha=0.7, label="x dbar(x)", lw=3)
plot!(x, A_s * x .^ λ_q .* (1.0 .- x) .^ K_q, alpha=0.7, label="x s(x)", lw=3)
plot!(x, A_c * x .^ λ_q .* (1.0 .- x) .^ K_q, alpha=0.7, label="x c(x)", lw=3)
plot!(x, A_b * x .^ λ_q .* (1.0 .- x) .^ K_q, alpha=0.7, label="x b(x)", lw=3)
plot!(xlabel="x", legend=:bottomleft, xscale=:log, ylims=(1e-8, 10), yscale=:log)
Prior predictive checks
We can start to visualise the type of PDFs that are allowed by the combination of the choice of parametrisation and prior distributions with some simple prior predictive checks, as done below for the valence style parametrisation...
N = 100
alpha = 0.03
total = Array{Float64,1}(undef, N)
first = true
leg = 0
plot()
for i in 1:N
λ_u_i = rand(Uniform(0, 1))
K_u_i = rand(Uniform(2, 10))
λ_d_i = rand(Uniform(0, 1))
K_d_i = rand(Uniform(2, 10))
A_u_i = 2 / sf.beta(λ_u_i, K_u_i + 1)
A_d_i = 1 / sf.beta(λ_d_i, K_d_i + 1)
I_u_i = A_u * sf.beta(λ_u_i + 1, K_u_i + 1)
I_d_i = A_d * sf.beta(λ_d_i + 1, K_d_i + 1)
u_V_i = Beta(λ_u_i, K_u_i + 1)
d_V_i = Beta(λ_d_i, K_d_i + 1)
remaining_i = 1 - (I_u_i + I_d_i)
dirichlet_i = Dirichlet([3.0, 2.0, 1, 0.5, 0.3, 0.2, 0.1])
I_i = rand(dirichlet_i) * remaining_i
λ_g1_i = rand(Uniform(-1, 0))
λ_g2_i = rand(Uniform(0, 1))
K_g_i = rand(Uniform(2, 10))
A_g2_i = I_i[1] / sf.beta(λ_g2_i + 1, K_g_i + 1)
A_g1_i = I_i[2] / sf.beta(λ_g1_i + 1, 5 + 1)
λ_q_i = rand(Uniform(-1, 0))
K_q_i = rand(Uniform(3, 7))
A_ubar_i = I_i[3] / (2 * sf.beta(λ_q_i + 1, K_q_i + 1))
A_dbar_i = I_i[4] / (2 * sf.beta(λ_q_i + 1, K_q_i + 1))
A_s_i = I_i[5] / (2 * sf.beta(λ_q_i + 1, K_q_i + 1))
A_c_i = I_i[6] / (2 * sf.beta(λ_q_i + 1, K_q_i + 1))
A_b_i = I_i[7] / (2 * sf.beta(λ_q_i + 1, K_q_i + 1))
total[i] = A_u_i * sf.beta(λ_u_i + 1, K_u_i + 1) + A_d_i * sf.beta(λ_d_i + 1, K_d_i + 1)
total[i] += A_g1_i * sf.beta(λ_g1_i + 1, K_q_i + 1) + A_g2_i * sf.beta(λ_g2_i + 1, K_g_i + 1)
total[i] += 2 * (A_ubar_i + A_dbar_i + A_s_i + A_c_i + A_b_i) * sf.beta(λ_q_i + 1, K_q_i + 1)
xg2_i = A_g2_i * x .^ λ_g2_i .* (1 .- x) .^ K_g_i
xg1_i = A_g1_i * x .^ λ_g1_i .* (1 .- x) .^ K_q_i
plot!(x, [x .* A_u_i .* x .^ λ_u_i .* (1 .- x) .^ K_u_i * 2], alpha=alpha, color="blue", lw=3)
plot!(x, x .* A_d_i .* x .^ λ_d_i .* (1 .- x) .^ K_d_i, alpha=alpha, color="orange", lw=3)
plot!(x, xg1_i + xg2_i, alpha=alpha, color="green", lw=3)
plot!(x, A_ubar_i * x .^ λ_q_i .* (1 .- x) .^ K_q_i, alpha=alpha, color="red", lw=3)
plot!(x, A_dbar_i * x .^ λ_q_i .* (1 .- x) .^ K_q_i, alpha=alpha, color="purple", lw=3)
plot!(x, A_s_i * x .^ λ_q_i .* (1 .- x) .^ K_q_i, alpha=alpha, color="brown", lw=3)
plot!(x, A_c_i * x .^ λ_q_i .* (1 .- x) .^ K_q_i, alpha=alpha, color="pink", lw=3)
plot!(x, A_b_i * x .^ λ_q_i .* (1 .- x) .^ K_q_i, alpha=alpha, color="grey", lw=3)
end
plot!(xlabel="x", ylabel="x f(x)", xscale=:log, legend=false,
ylims=(1e-8, 10), yscale=:log)
Looks like naive priors need some work...
PDF Parametrisation interface
PartonDensity
provides a handy interface to both the parametrisations through the DirichletPDFParams
and ValencePDFParams
options.
using PartonDensity
Let's try the Dirichlet specification...
weights_dir = [3.0, 1.0, 5.0, 5.0, 1.0, 1.0, 1.0, 0.5, 0.5]
θ_dir = rand(Dirichlet(weights_dir))
pdf_params = DirichletPDFParams(K_u=4.0, K_d=6.0, λ_g1=0.7, λ_g2=-0.4,
K_g=6.0, λ_q=-0.5, K_q=5.0, θ=θ_dir);
plot_input_pdfs(pdf_params)
int_xtotx(pdf_params) ≈ 1
true
And now the valence specification...
weights_val = [5.0, 5.0, 1.0, 1.0, 1.0, 0.5, 0.5]
λ_u = 0.7
K_u = 4.0
λ_d = 0.5
K_d = 6.0
θ_val = get_θ_val(λ_u, K_u, λ_d, K_d, weights_val)
pdf_params = ValencePDFParams(λ_u=λ_u, K_u=K_u, λ_d=λ_d, K_d=K_d, λ_g1=0.7, λ_g2=-0.4,
K_g=6.0, λ_q=-0.5, K_q=5.0, θ=θ_val);
plot_input_pdfs(pdf_params)
int_xtotx(pdf_params) ≈ 1
true
This page was generated using Literate.jl.