nu_coincidence.populations.aux_samplers module
- class nu_coincidence.populations.aux_samplers.CombinedFluxIndexSampler
Bases:
AuxiliarySamplerMake a transformed parameter to perform a combined linear selection on energy flux and spectral index.
Selection has the form: index =
slopelog10(flux) +interceptSo, here we transform to: -(index -
slopelog10(flux)) such that a constant selection can be made on -intercept. This works with bothLowerBoundandSoftSelectionSee e.g. Fig. 4 in Ajello et al. 2020 (4LAC), default values are set to approximate this.
- slope
- true_sampler(size)
- class nu_coincidence.populations.aux_samplers.FlareAmplitudeAuxSampler(name='flare_amplitudes', observed=False)
Bases:
AuxiliarySamplerSample increase in luminosity of the flares as a multiplicative factor.
- alpha
- true_sampler(size)
- xmin
- class nu_coincidence.populations.aux_samplers.FlareDurationAuxSampler(name='flare_durations', observed=False)
Bases:
AuxiliarySamplerSample flare durations given flare times.
- alpha
- true_sampler(size)
- class nu_coincidence.populations.aux_samplers.FlareRateAuxSampler(name='flare_rate', observed=False)
Bases:
PowerLawAuxSamplerSample source flare rate given its variability.
- true_sampler(size)
- class nu_coincidence.populations.aux_samplers.FlareTimeAuxSampler(name='flare_times', observed=False)
Bases:
AuxiliarySamplerSample flare times for each source give rate and total number of flares.
- obs_time
- true_sampler(size)
- class nu_coincidence.populations.aux_samplers.FluxSampler
Bases:
AuxiliarySamplerSample observed fluxes based on the latent fluxes.
This is equivalent to defining
flux_sigmain PopulationSynth.draw_survey(), but also allows to define more complicated selections on the observed flux, such as theCombinedFluxIndexSelection.- observation_sampler(size)
- sigma
- true_sampler(size)
- class nu_coincidence.populations.aux_samplers.SpectralIndexAuxSampler(name='spectral_index', observed=True)
Bases:
NormalAuxSamplerSample the spectral index of a source with a simple power law spectrum.