icecube_tools.point_source_likelihood.energy_likelihood module
- class icecube_tools.point_source_likelihood.energy_likelihood.DataDrivenBackgroundEnergyLikelihood(period, bins: Sequence[float] | None = None)
Bases:
MarginalisedEnergyLikelihood
Energy likelihood for background obtained by making a distribution from the reconstructed energies. Data is mostly background. No spectral index is assumed.
- make_hist()
Create pdf-histograms
- sample(dec, seed=42)
Sample from pdfs :param dec: np.ndarray of declinations of events :return: Samples drawn from the pdfs of corresponding declination bin
- class icecube_tools.point_source_likelihood.energy_likelihood.MarginalisedEnergyLikelihood
Bases:
ABC
Abstract base class for the marginalised energy likelihood.
L = int d Etrue P(Ereco | Etrue) P(Etrue | index) = P(Ereco | index).
- class icecube_tools.point_source_likelihood.energy_likelihood.MarginalisedEnergyLikelihood2021(index_list, path, fname, src_dec, ftype='h5', min_index=1.5, max_index=4.0, min_E=100.0, max_E=1000000000.0, min_sind=-0.1, max_sind=1.0, Ebins=50)
Bases:
MarginalisedEnergyLikelihood
Compute the marginalised energy likelihood by reading in the provided IRF data of 2021. Creates instances of MarginalisedEnergyLikelihoodFromSimFixedIndex (slightly copied from MarginalisedEnergyLikelihoodFromSim but with different interpolating) for each given index.
- calc_loglike(energies, index)
Function intended for testing only.
- class icecube_tools.point_source_likelihood.energy_likelihood.MarginalisedEnergyLikelihoodBraun2008(energy_list, pdf_list, index_list)
Bases:
MarginalisedEnergyLikelihood
Compute the marginalised enegry likelihood using Figure 4 in Braun+2008.
- class icecube_tools.point_source_likelihood.energy_likelihood.MarginalisedEnergyLikelihoodFixed(energy, min_index=1.5, max_index=4.0, min_E=100.0, max_E=1000000000.0, min_sind=-0.1, max_sind=1.0, Ebins=50)
Bases:
MarginalisedEnergyLikelihood
Compute the marginalised energy likelihood for a fixed case based on a simulation. Eg. P(E | atmos + diffuse astro).
- class icecube_tools.point_source_likelihood.energy_likelihood.MarginalisedEnergyLikelihoodFromSim(energy, dec, sim_index=1.5, min_index=1.5, max_index=4.0, min_E=100.0, max_E=1000000000.0, min_sind=-0.1, max_sind=1.0, Ebins=50)
Bases:
MarginalisedEnergyLikelihood
Compute the marginalised energy likelihood by using a simulation of a large number of reconstructed muon neutrino tracks.
- set_src_dec(src_dec)
Set the source declination in private variable Precompute likelihood distributions
- class icecube_tools.point_source_likelihood.energy_likelihood.MarginalisedEnergyLikelihoodFromSimFixedIndex(energy, dec, sim_index, src_dec=0.0, min_E=100.0, max_E=1000000000.0, min_sind=-0.1, max_sind=1.0, Ebins=50)
Bases:
MarginalisedEnergyLikelihood
Copied from MarginalisedEnergyLikelihoodFromSim but without the interpolating
- property src_dec
- class icecube_tools.point_source_likelihood.energy_likelihood.MarginalisedIntegratedEnergyLikelihood(period: str, reco_bins: ndarray, min_index: float = 1.5, max_index: float = 4.0)
Bases:
MarginalisedEnergyLikelihood
Calculates energy likelihood by integration rather than simulation.
- static integrated_power_law(loge_low, loge_high, index)
Integrates power law :param loge_low: float or np.ndarray of upper integration bound(s) :param loge_high: float or np.ndarray of lower integration bound(s) :param index: spectral index :return: Integrated power law, float or np.ndarray
- p_det_above_threshold(Etrue, dec)
Calculate probability of an event with Etrue being reconstructed above and below given thresholds, which are provided by the data and are declination dependent.
- static power_law_loge(loge, index)
Evaluated power law :param loge: Logarithmic energy, base 10 :param index: Spectral index :return: Evaluated power law
- icecube_tools.point_source_likelihood.energy_likelihood.read_input_from_file(filename)
Helper function to read in data digitized from plots.
- icecube_tools.point_source_likelihood.energy_likelihood.reweight_spectrum(energies, sim_index, new_index, bins=1000)
Use energies from a simulation with a harder spectral index for efficiency.
The spectrum is then resampled from the weighted histogram
- Parameters:
energies – Energies to be reiweghted.
- Sim_index:
Spectral index of the simulation.
- New_index:
Spectral index to reweight to.