icecube_tools.point_source_likelihood.point_source_likelihood module
- class icecube_tools.point_source_likelihood.point_source_likelihood.EnergyDependentSpatialPointSourceLikelihood(direction_likelihood, ras, decs, energies, source_coord, band_width_factor=3.0)
- Bases: - object- Calculate the point source likelihood for a given neutrino dataset - in terms of reconstructed arrival directions. - This class is exactly as in PointSourceLikelihood, but without the energy depedence. - get_test_statistic()
- Calculate the test statistic for the best fit ns 
 
- class icecube_tools.point_source_likelihood.point_source_likelihood.PointSourceLikelihood(direction_likelihood: SpatialLikelihood, energy_likelihood: MarginalisedEnergyLikelihood, ras: Sequence[float], decs: Sequence[float], energies: Sequence[float], ang_errs: Sequence[float], source_coord: Tuple[float, float], which: str = 'both', vary_atmo: bool = False, vary_astro: bool = False, bg_energy_likelihood=None, bg_spatial_likelihood=None, index_prior=None, band_width_factor: float = 5.0, cosz_bins: ndarray | None = None)
- Bases: - object- Calculate the point source likelihood for a given neutrino dataset - in terms of reconstructed energies and arrival directions. Based on what is described in Braun+2008 and Aartsen+2018. - angular_distance()
 - get_test_statistic()
- Calculate the test statistic for the best fit ns 
 - property source_coord
 - update_events(ra, dec, reco_energy, ang_err)
- Provide new events and call self._select_nearby_events() 
 
- class icecube_tools.point_source_likelihood.point_source_likelihood.SimplePointSourceLikelihood(direction_likelihood, event_coords, source_coord)
- Bases: - object
- class icecube_tools.point_source_likelihood.point_source_likelihood.SimpleWithEnergyPointSourceLikelihood(direction_likelihood, energy_likelihood, event_coords, source_coord)
- Bases: - object
- class icecube_tools.point_source_likelihood.point_source_likelihood.SpatialOnlyPointSourceLikelihood(direction_likelihood, event_coords, source_coord)
- Bases: - object- Calculate the point source likelihood for a given neutrino dataset - in terms of reconstructed arrival directions. - This class is exactly as in PointSourceLikelihood, but without the energy depedence. - Should be removed at some point, this case is already included in the main class with the keyword “which”, defaulting to “both”. - get_test_statistic()
- Calculate the test statistic for the best fit ns 
 
- class icecube_tools.point_source_likelihood.point_source_likelihood.TimeDependentPointSourceLikelihood(source_coord: Tuple[float, float], data_periods: List[str], ra: Dict, dec: Dict, reco_energy: Dict, ang_err: Dict, energy_llh: Dict | None = None, times: Dict | None = None, path=None, index_list=None, vary_atmo: bool = False, vary_astro: bool = False, which: str = 'both', emin: float = 10.0, emax: float = 1000000000.0, min_index: float = 1.5, max_index: float = 5.0, new_reco_bins: ndarray = array([1., 1.33333333, 1.66666667, 2., 2.33333333, 2.66666667, 3., 3.33333333, 3.66666667, 4., 4.33333333, 4.66666667, 5., 5.33333333, 5.66666667, 6., 6.33333333, 6.66666667, 7., 7.33333333, 7.66666667, 8., 8.33333333, 8.66666667, 9.]), sigma: float = 2.0, band_width_factor: float = 5.0)
- Bases: - object- property N
 - property N_dict
 - property Nprime
 - property Nprime_dict
 - property Ntot
 - property Ntot_dict
 - get_test_statistic()
- Calculate test statistic 
 - ns_to_flux(ns: float, index: float)
- Convert some given ns and spectral index to the average flux over the detector livetime. 
 - reset_events(ra: Dict, dec: Dict, reco_energy: Dict, ang_err: Dict)
 - property source_coord