icecube_tools.point_source_likelihood.point_source_likelihood module
- class icecube_tools.point_source_likelihood.point_source_likelihood.EnergyDependentSpatialPointSourceLikelihood(direction_likelihood, ras, decs, energies, source_coord, band_width_factor=3.0)
Bases:
object
Calculate the point source likelihood for a given neutrino dataset - in terms of reconstructed arrival directions.
This class is exactly as in PointSourceLikelihood, but without the energy depedence.
- get_test_statistic()
Calculate the test statistic for the best fit ns
- class icecube_tools.point_source_likelihood.point_source_likelihood.PointSourceLikelihood(direction_likelihood: SpatialLikelihood, energy_likelihood: MarginalisedEnergyLikelihood, ras: Sequence[float], decs: Sequence[float], energies: Sequence[float], ang_errs: Sequence[float], source_coord: Tuple[float, float], which: str = 'both', vary_atmo: bool = False, vary_astro: bool = False, bg_energy_likelihood=None, bg_spatial_likelihood=None, index_prior=None, band_width_factor: float = 5.0, cosz_bins: ndarray | None = None)
Bases:
object
Calculate the point source likelihood for a given neutrino dataset - in terms of reconstructed energies and arrival directions. Based on what is described in Braun+2008 and Aartsen+2018.
- angular_distance()
- get_test_statistic()
Calculate the test statistic for the best fit ns
- property source_coord
- update_events(ra, dec, reco_energy, ang_err)
Provide new events and call self._select_nearby_events()
- class icecube_tools.point_source_likelihood.point_source_likelihood.SimplePointSourceLikelihood(direction_likelihood, event_coords, source_coord)
Bases:
object
- class icecube_tools.point_source_likelihood.point_source_likelihood.SimpleWithEnergyPointSourceLikelihood(direction_likelihood, energy_likelihood, event_coords, source_coord)
Bases:
object
- class icecube_tools.point_source_likelihood.point_source_likelihood.SpatialOnlyPointSourceLikelihood(direction_likelihood, event_coords, source_coord)
Bases:
object
Calculate the point source likelihood for a given neutrino dataset - in terms of reconstructed arrival directions.
This class is exactly as in PointSourceLikelihood, but without the energy depedence.
Should be removed at some point, this case is already included in the main class with the keyword “which”, defaulting to “both”.
- get_test_statistic()
Calculate the test statistic for the best fit ns
- class icecube_tools.point_source_likelihood.point_source_likelihood.TimeDependentPointSourceLikelihood(source_coord: Tuple[float, float], data_periods: List[str], ra: Dict, dec: Dict, reco_energy: Dict, ang_err: Dict, energy_llh: Dict | None = None, times: Dict | None = None, path=None, index_list=None, vary_atmo: bool = False, vary_astro: bool = False, which: str = 'both', emin: float = 10.0, emax: float = 1000000000.0, min_index: float = 1.5, max_index: float = 5.0, new_reco_bins: ndarray = array([1., 1.33333333, 1.66666667, 2., 2.33333333, 2.66666667, 3., 3.33333333, 3.66666667, 4., 4.33333333, 4.66666667, 5., 5.33333333, 5.66666667, 6., 6.33333333, 6.66666667, 7., 7.33333333, 7.66666667, 8., 8.33333333, 8.66666667, 9.]), sigma: float = 2.0, band_width_factor: float = 5.0)
Bases:
object
- property N
- property N_dict
- property Nprime
- property Nprime_dict
- property Ntot
- property Ntot_dict
- get_test_statistic()
Calculate test statistic
- ns_to_flux(ns: float, index: float)
Convert some given ns and spectral index to the average flux over the detector livetime.
- reset_events(ra: Dict, dec: Dict, reco_energy: Dict, ang_err: Dict)
- property source_coord